In Linear Algebra, one often has the problem that one wants to talk about complex eigenvalues of objects defined over the reals. If the object is a matrix, it is clear what that means. But what if the object is an endomorphism of a non-canonical real vectorspace? This question is strongly related an important use of tensor products, namely base changes.
Posts about universal property.
We show some kind of universal property for the Jordan decomposition of an endomorphism of a finite dimensional vector space.