A standard topic in linear algebra is the dual space of a vector space, as well as the canonical embedding of a vector space in its double dual. Moreover, transposition of homomorphisms in terms of dual spaces is rather well known. Something less known is that one has a canonical map from the dual of V tensored with W to the space of homomorphisms from V to W. In this abstract nonsense post, we describe these canonical maps, their interplay, and try to determine their images.
Posts about tensor product.
In Linear Algebra, one often has the problem that one wants to talk about complex eigenvalues of objects defined over the reals. If the object is a matrix, it is clear what that means. But what if the object is an endomorphism of a non-canonical real vectorspace? This question is strongly related an important use of tensor products, namely base changes.