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What is the Arakelov divisor class group?

The Arakelov divisor class group Pic0(K) is an analogue
of the divisor class group of a function field or projective
curve for number fields K. It is an extension of the ideal
class group Cl(OK) of OK, the ring of integers of K, with
an n-dimensional torus Rn/Λ, where Λ is the unit lattice:
• n is the unit rank of K, i.e. the rank of O∗K;
• Λ is a homomorphic image of the free part of O∗K.

In fact, the theory presented here also works for function
fields with finite constant field, with the difference that no
numerical approximation is needed. The f -representations
(see the next column) correspond to reduced divisors in
the function field setting in the sense of F. Heß.

In the number field case, to our knowledge, explicit arith-
metic in Pic0(K) was so far only available in real quadratic
number fields due to work of Hühnlein and Paulus [HP01],
and Jacobson, Scheidler and Williams [JSW01]. Our work
generalizes this to all number fields. Our method is also
rigorous in the sense that:
•we have explicit bounds on the required precision for the

approximations which ensure that the results are correct
up to an arbitrarily small approximation error;
•we have explicit bounds on that approximation error.

The advantage over R. Schoof’s treatment of Pic0(K) in
[Sch08] is that we have a unique representation of elements
in Pic0(K).

Motivating applications

The main tool are (f, p)-representations, which are f -
representations with floating point approximations of the in-
volved real numbers. For details on f -representations, see
the next column.
(1) (f, p)-representations allow to do effective approxi-

mate computations in the Arakelov divisor class group
Pic0(K):
•when keeping track of floating point approximation er-

rors, one always knows how far the current approxi-
mated element is at most off the element itself;
•moreover, the errors are easy to control, i.e. if one

wants the result with a certain precision, one can
quickly compute the precision one has to start with.

(2) One can use f -representations to efficiently test
whether v ∈ Λ for a vector v ∈ Rn, i.e. if v is the log-
arithm vector of a unit: this is the case if, and only if,
π(v) = (OK, (0, . . . , 0)). (For the definition of π, see the
box “f -representations and the torus Rn/Λ”.)

(3) In Buchmann’s baby-step giant-step algorithm for com-
puting fundamental units of number fields [Buc87], one
needs to quickly find reduced ideals near to given po-
sitions, which can be computed by taking the ideal part
of π(v). These are the “giant steps”.

f -representations

Let σ0, . . . , σn : K → C be the embeddings corresponding to the
n + 1 distinct absolute values |f |i := |σi(f )|. For the sake of sim-
plicity, let us assume that σ0(K) ⊆ R.

An f -representation is a pair (a, (f1, . . . , fn)), where a is a non-
zero fractional ideal of OK and f1, . . . , fn ∈ R are positive num-
bers, such that

{g ∈ a | |g|0 ≤ 1, ∀i ≥ 1 : |g|i ≤ fi} = {−1, 0, 1}.

Let f -Rep(K) be the set of all f -representations. One obtains
[Fon09]:

Theorem. There exists an effectively computable bijection

Ψ : f -Rep(K) −→ Pic0(K).

If one defines A+B := Ψ−1(Ψ(A)+Ψ(B)) for A,B ∈ f -Rep(K),
the resulting group operation on f -Rep(K) can be effectively
computed without using Ψ.

Obviously, approximations have to be used for the fi’s. We chose
a floating point representation which allows to keep track of the
approximation error.

An important property of f -representation is that they are small:
• the ideal a can be stored using O((log |∆K|)3) bits;
• and 1 ≤ fi ≤

√
∆K, where ∆K is the discriminant of K.

f -representations and the torus Rn/Λ

The connected component of the neutral element of Pic0(K) is
isomorphic to Rn/Λ. Under the bijection Ψ−1 from above, it maps
to f -Rep(OK), defined as{

(a, (fi)i) ∈ f -Rep(K)
∣∣ a = 1

µOK for some µ ∈ K∗
}
,

and the isomorphism from f -Rep(OK) to Rn/Λ is given by

d :
(1
µOK, (fi)i

)
7−→

(
log fi − log |µ|i

)
i + Λ.

Computing this map is essentially solving the discrete logarithm
problem in Pic0(K).
On the other hand, the map π : Rn → f -Rep(OK) given by the
projection Rn → Rn/Λ followed by the inverse of the above iso-
morphism is effectively computable:
•One can quickly compute f -representations representing π(v)

for v = (v1, . . . , vn) ∈ Rn with small |vi|.
• Then, one can use an add-and-double technique to rapidly

compute π(v) in O(
∑n
i=1 log |vi|) additions of f -representations.

Numerical approximation

To compute sums of f -representations or inverses, we need
to compute short lattice elements in a lattice whose coordi-
nates are algebraic numbers – these lattices are ideal lat-
tices, considered in the d = [K : Q]-dimensional Minkowski
space K⊗QR. Hence, we need to approximate a lattice ba-
sis v1, . . . , vd ∈ Rd and work with the approximated integral
lattice

Z Round(2qv1) + · · · + Z Round(2qvd) ⊆ Zd.

Buchmann and Williams gave asymptotic results on the re-
quired precision [BW87, Buc87]: assuming that the field de-
gree is fixed, the required precision is in O(log |∆K|). One
can work these out in detail to obtain the following lower
bounds for q:

[K : Q] K totally real or Galois general case
2 10.501 + 5.7708 log |∆K| 10.501 + 5.7708 log |∆K|
3 17.510 + 9.3776 log |∆K| 22.010 + 18.034 log |∆K|
4 25.000 + 12.985 log |∆K| 37.000 + 36.068 log |∆K|
5 32.898 + 16.591 log |∆K| 55.398 + 59.872 log |∆K|
6 41.143 + 20.198 log |∆K| 77.143 + 89.448 log |∆K|
7 49.689 + 23.805 log |∆K| 102.19 + 124.80 log |∆K|
8 58.500 + 27.412 log |∆K| 130.50 + 165.91 log |∆K|
10 76.812 + 34.625 log |∆K| 196.82 + 265.46 log |∆K|
12 95.907 + 41.839 log |∆K| 275.91 + 388.09 log |∆K|
14 115.67 + 49.052 log |∆K| 367.67 + 533.80 log |∆K|
16 136.00 + 56.266 log |∆K| 472.00 + 702.60 log |∆K|
18 156.85 + 63.479 log |∆K| 588.85 + 894.48 log |∆K|
20 178.15 + 70.693 log |∆K| 718.15 + 1109.5 log |∆K|

When using these bounds, everything is rigorous: if one
uses this precision to do arithmetic in Pic0(K) using (f, p)-
representations, then the results are always correct, up to a
small approximation error which can be explicitly bounded.

In practice, the required precisions are huge. One could
work with far less many bits, and often obtain the same re-
sults. Our implementation uses the precision given by these
bounds to be on the safe side.

Our constants in the bounds presented above are already
better than the bounds one obtains when tracing the con-
stants through the analysis of Buchmann and Williams. We
hope to be able to make them smaller, giving faster compu-
tation and making higher field degrees feasible.

Implementation and timing

We have an implementation of effective arithmetic in Pic0(K)
using (f, p)-representations and of computation of π(v) for most
number fields, which uses high precision arithmetic to avoid
potential errors due to bad approximation. Unfortunately, this
turns out to be slow – which is at least partially the fault of our
implementation.
To enumerate short lattice vectors, we use the Schnorr-
Euchner enumeration technique. The running time is polyno-
mial in the size of the coefficients and exponential in the di-
mension, which is the field degree [K : Q]. Our implementa-
tion currently uses multi-precision floating point numbers for
the Gram-Schmidt coefficients. We tested our implementa-
tion with a large amount of totally real number fields up to
degree [K : Q] = 8 so far. The following graphs show the
time required to compute π(v) for 10 random choices of v with
coordinates of absolute value up to 264, including the initializa-
tions of the addition chains. This is all done by performing a
sequence of additions in Pic0(K) using our arithmetic.
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1.32 seconds
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1.38 seconds

[K : Q] = 2 [K : Q] = 3
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38.52 seconds
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The x-axes show log |∆K|, while the y-axes show the time
needed. The curve is a cubic fit function in log |∆K|.
The clear bottleneck of our method is the enumeration of short
lattice vectors, in combination with the huge integral lattice this
is applied to.

Future (planned) improvements

(1) Use the rigorous floating point Schnorr-Euchner enumera-
tion method by Pujol and Stehlé.

(2) Find smaller bounds on the minimal precision.
(3) Find better starting values for reductions, to minimize the

number of short lattice vector enumerations as well as the
time needed for them.
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